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Neural variability in the presence of noise has been studied mainly in resonator neurons, such as Hodgkin-
Huxley or FitzHugh-Nagumo models. Here we investigate this variability for integrator neurons, whose excit-
ability is due to a saddle-node bifurcation of the rest state instead of a Hopf bifurcation. Using simple
theoretical expressions for the interspike times distributions, we obtain coefficients of variation in good agree-
ment with numerical calculations in realistic neuron models. The main features of this coefficient as a function
of noise depend on the refractory period and on the presence of bistability. The bistability is responsible for the
existence of two different time scales in the spiking behavior giving an antiresonance effect.
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Neurons are an important class of excitable dynamical
systems, wherein a perturbation of an equilibriumsquies-
centd state may be amplified to produce a large excursion of
the relevant dynamical variables before returning to equilib-
rium. In neurons, this amplified response is due to the fact
that ionic conductances depend on the membrane potential.
This translates into sudden increases of the membrane volt-
age or spikes, which constitute the basic information units of
the neural code. An important step towards the unraveling of
this code is the understanding of how individual neurons
respond to a given stimulus and which is the intrinsic dy-
namics responsible for this behavior.

From a dynamical systems perspective, the reason for ex-
citability is that the neuron is close to a bifurcation point
where a transition takes place between a rest statesa stable
fixed pointd and repetitive firingsa stable limit cycled f1g.
Obviously, how close the system must be to this transition
point to be excitable depends on the particular case and the
size of the perturbation. Real neurons are in general high-
dimensional, nonlinear dynamical systems, where the num-
ber of dynamical variables is determined by the different
kinds of ionic channels across the membrane contributing to
spike generation. It is thus intriguing that, in spite of the
large variability of ionic currents and conductances, all bio-
physically detailed neuron models can be grouped in two
classes according to their excitable propertiesf1g. Histori-
cally f2g, type I excitability is characterized by spikes gener-
ated with arbitrarily low frequency as a dc current is injected,
while for type II neurons the onset of repetitive firing is at
nonzero frequency. Moreover, for this last class the spiking
frequency is relatively insensitive to changes in the applied
current. From the point of view of dynamical systems theory,
neurons are better classified as resonators or integratorsf1g,
depending on two different dynamical scenarios: in resonator

neurons, like the Hodgkin-Huxley model of the squid axon,
repetitive firing is produced by a Hopf bifurcation where the
only equilibrium pointsrest stated loses stability as the cur-
rent increases and the system falls on to a stable limit cycle.
By contrast, integrator neurons have three equilibria for cur-
rents below the critical current, one of them for high voltage
sstable or unstabled, another stable for low voltagesa noded,
and another unstable with only one positive eigenvaluesa
saddle pointd, see Fig. 1. At the critical value of current,
these two last fixed points merge and disappear through a
saddle-node bifurcation, leaving the system with a stable pe-
riodic solution. Typically, resonator neurons are type II and
integrator neurons are type If1,3,4g

The implications of these different bifurcation structures
sHopf versus saddle-noded go beyond the above-mentioned
frequency behavior for type I and II excitability. For in-
stance, the small-amplitude limit cycle present in the sub-
critical Hopf bifurcation below the transition current origi-
nates subthreshold oscillations. Thus, resonator neurons
combine oscillatory and excitatory properties close to the
bifurcation point and respond preferentially to a given input
frequencysshow phase lockingd, while integrator neurons in-
tegrate the subthreshold response to a sufficiently high fre-
quency input, do not show subthreshold oscillations, and are
more difficult to synchronize.

Real neurons are not purely deterministic devices but usu-
ally operate under noisy conditions, due to membrane volt-
age fluctuations or random synaptic inputssfor an analysis of
the sources of neuronal noise, see, for instance, Ref.f5gd.
The response of individual neurons in the presence of noise
has been investigated for a Hodgkin-Huxley modelf6g in the
context of coherence resonancef7–9g. In analogy to the cel-
ebrated stochastic resonance, the coherence of oscillations of
an excitable system may be enhanced by a proper amount of
noise without any time-periodic input, whenever the system
is close to the bifurcation pointf8,9g. Other variants of the
coherence resonance phenomenon in single element excit-
able systems have been investigated in the FitzHugh-
Nagumo model, which is a simplified version of a resonator
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neuronf9–13g, in models of bursting neuronsf14g, and in the
leaky integrate-and-firesLIFd neuron modelf15g. In the
FitzHugh-Nagumo model and a LIF model with absolute re-
fractory period, it has been shown that coherence and anti-
coherence resonance can be tuned by a proper amount of
noisef12,16g. The behavior of a noise-driven dynamical sys-
tem with a saddle node on a circle bifurcation was studied as
one of the first examples of autonomous stochastic resonance
f7,8g showing a resonant profile in the signal-to-noise ratio
sSNRd of the power spectrum justbelow the bifurcation
value. For a recent review on the effects of noise in excitable
systems, including coherence and stochastic resonance in
some neuron models, see Ref.f17g.

Coherencesor its inverse, variabilityd is usually character-
ized by the coefficient of variationsCVd, defined as the vari-
ance to mean ratio in the distribution of interspike intervals
sISId. Variability in ISI distributions of single neurons has
important implications for information coding and response
reproducibilityf18–22g. For neurons with subthreshold oscil-
lations, such as in the Hodgkin-Huxley model, care must be
taken with this indicator, since for low noise intensities dis-
tributions are multimodal, showing several peaks due to im-
perfect phase locking between noise-activated spiking and
the intrinsic oscillationsf11g. Since resonator neurons re-
spond in a narrow frequency range, the correlation time or
the SNR of the dominant peak in the power spectrum could
be a better measure of the coherence of spiking. Integrator
neurons, however, usually show larger coefficients of varia-
tion compared to the dominant peak of resonator distribu-
tions. This has been shown numericallyf23g and analytically
f24g for a Q-neuron model, which corresponds to a one-
dimensional normal form of a saddle-node bifurcation. The
reason for this higher variability, as we will see, is that ISI
distributions of integrator neurons are unimodal and charac-
terized by long exponential tails, due to the broader fre-
quency range of their response. These neurons act, therefore,
as Poisson generators and fire with high irregularity.

In this paper, we analyze in detail the spiking features of
different realistic models of integrator neurons, under the
simultaneous action of a dc current and a noisy input. The
coherence as a function of the noise intensity shows a rather
different behavior from that of resonator neurons usually in-
vestigated in the literature. In particular, when an integrator
neuron presents hysteresissbistability due to coexistence of

stable rest and spiking statesd, the CV may exhibit a maxi-
mum as a function of the noise intensity for moderate values
of noise level, showing an anticoherence resonance phenom-
enon. Outside this regime, the CV either decreases or in-
creases monotonically, depending on whether the neuron is
before or after the saddle-node bifurcation. We show that for
a wide range of noise amplitudes and applied currents, the
ISI distributions are of Poisson type, although modified to
include a refractory periodsspiking with very large fre-
quency is not possible in real neurons due to the recovery
time of the membrane potentiald. The refractory period is
important in explaining the bounds for the CV, which is gen-
erally less than 1. The anticoherence phenomenon is also
well explained by considering two Poisson or renewal pro-
cesses with different rates, due to the bistable dynamics of
the neuron.

I. MODELS AND SPIKING PROPERTIES

We investigate the spiking behavior of two different inte-
grator neuron models, one showing a bistability region and
the other without bistability. As a first, simpler case study we
use a Morris-Lecar modelf25g, which is a two-dimensional
system originally proposed for the membrane potential of a
barnacle muscle fiber. The dynamical variables are the mem-
brane voltageV and the fraction of open potassium channels.
The equations and model parameters used are listed in Ap-
pendix A. In Fig. 1sad, we show the bifurcation diagramf26g
of the membrane voltage as a function of the applied dc
current. Stablesunstabled equilibria corresponding to quies-
cent states are represented by continuoussdashed linesd
while stablesunstabled limit cycles corresponding to repeti-
tive firing are shown with filledsemptyd circles. For I
,39.95mA/cm2, a saddle-node bifurcation of the fixed
point takes place. As anticipated in the previous section, be-
low the bifurcation value three equilibria coexist, one un-
stableshigh voltaged determining the shape of the action po-
tential, another stableslow voltaged which is the rest state,
and an unstable saddle point at intermediate voltage acting as
a threshold. Since the bifurcation is of the type saddle-node
on invariant circlef1,7,27g, the limit cycle appears right at
the bifurcation point, and thus there is no coexistence of
stable rest and spiking sates. Note that a subcritical Hopf
bifurcation, rendering the unstable high voltage equilibrium

FIG. 1. Bifurcation diagram of the membrane voltagesin mVd as a function of the dc injected current for the two models discussed in
the text.sad Morris-LecarsAppendix Ad. sbd Leech neuronsAppendix Bd. Solid lines: stable fixed points. Dashed lines: unstable fixed points.
Filled circles: stable limit cycles. Empty circles: unstable limit cycles. The inset insbd is an enhancement of the saddle–node bifurcation
region showing the coexistence of the stable limit cycle and the node.
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stable as the current increases, is also present. However, the
bifurcation value is too high to be physiologically relevant.

As another, more realistic instance of an integrator neu-
ron, we have found among experimental research that the
spike-generating sodium and potassium conductances of the
pressure-sensitive neuron of the leechMacrobdella decora
f28,29g produce a saddle-node bifurcation of the rest state.
The physiological origin of this dynamical behavior is in the
potassium conductance; in fact, changing the opening rate
for the potassium channel, this model can be converted into a
resonator neuronssee Appendix Bd. The bifurcation diagram
for this model is shown in Fig. 1sbd. This diagram is very
similar to that of Morris-Lecar in the left panel except for
two differences: the first one is that the subcritical Hopf bi-
furcation takes place at negative values of the current. Thus,
in all the relevant current range the high voltage quiescent
state is stable. This, again, may not be biologically signifi-
cant for the real neuron since it should be necessary to de-
polarize the membrane by, for instance, injecting an abnor-
mally high current to artificially place the system in this
state. The second difference, more important for the present
discussion, is that the stable limit cycle is born in a bifurca-
tion prior to the saddle-node pointfsee the inset in Fig. 1sbdg.
Thus, for a short current interval we have coexistence of a
stable rest state and a stable limit cycle. The saddle-node
bifurcation takes place atIdc,1.1 mA/cm2, while the limit
cycle disappears atIdc,0.95mA/cm2. The bistable or hys-
teretic behavior is illustrated in Fig. 2scd for the deterministic

systemsno noised and a step current, where the difference
with the Morris-Lecar modelfFig. 2sadg is apparent. First the
neuron is placed in the excitable regime in both cases, close
to but previous to the saddle-node bifurcation point. With a
sudden increase in voltage of 1mA/cm2, both neurons are
brought past the bifurcation point and start periodic firing.
After some time, an inhibitory current step brings both sys-
tems to the initial current value. In Morris-LecarfFig. 2sadg,
the system returns to the excitable regime since the limit
cycle no longer exists before the saddle-node bifurcation. In
the leech neuronfFig. 2scdg, the system remains in the stable
branch of the limit cycle, and continues firing, albeit with
lower frequency. Another decrease in current is necessary to
hyperpolarize the membrane below the bistability regime and
terminate firing. This bistability is also typical of models
with a Hopf bifurcation, although the origin is different. As
an illustration, we show in Fig. 3 the bifurcation diagram of
the modified leech neuron model with resonator properties,
and its behavior under a ramp injected current. In this sys-
tem, the bistability region lies between the Hopf bifurcation
point at Idc,18.3mA/cm2 and the fold limit cycle bifurca-
tion, where the stable and unstable limit cycle collide and
disappear, atIdc,13.6mA/cm2. The most apparent differ-
ences in spiking behavior with respect to an integrator neu-
ron are the existence of subthreshold oscillations before and
after firing, and the relative insensitivity of the spiking fre-
quency to the intensity of the injected current.

In the rest of the paper, we will add a noisy inputIn to the
dc current, which is treated as an Ornstein-Uhlenbeck sto-

FIG. 2. sColor onlined Spiking behavior of the
two type I models under a step current and a low
intensity noise source in the excitable regime.
Top panels: Morris-Lecar. sad 38.5ø Idc

ø40.5mA/cm2, D=0. sbd Idc=39.9mA/cm2,
D=0.7. Bottom panels: leech model.scd 0ø Idc

ø2 mA/cm2, D=0. sdd Idc=1 mA/cm2, D=0.07.

FIG. 3. sColor onlined sad Bifurcation diagram
of the leech neuron model shown in Fig. 1sbd
with a different closing rate for the potassium
channelssee Appendix Bd. sbd Spiking behavior
of the modified leech model under a ramp
current.
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chastic processsGaussian colored noised. Noisy fluctuations
of the membrane voltage with a finite correlation time may
be important, for instance, if channel noisesdue to the finite
number of ion channels in a patch of membraned or noise due
to synaptic transmission are taken into accountf5g. The noisy
input satisfies the equation

t
dIn
dt

= − In + Î2Djstd, s1d

wherejstd is a Gaussian white noise, andD and t are the
intensity and correlation time of the stochastic processIn,

kInstdIns0dl =
D

t
e−t/t. s2d

In order to separate time scales, we take a correlation time of
one order of magnitude less than the relevant period of the
system, and thus fix it tot=2 ms for the leech neuron model
andt=20 ms for the Morris-Lecar model. Nevertheless, we
checked that decreasing the correlation time did not affect
the statistical quantities, therefore a Gaussian white noise
source would produce the same effect on the neuron
dynamics.

The spiking behavior of the noise-driven neurons shows
qualitative differences in both models, especially for low
noise intensities. These are illustrated in Figs. 2sbd and 2sdd.
In the excitable regime of the Morris-Lecar system
sIdc=39.9mA/cm2, just below the saddle-node bifurcation
valued, a low noise intensity produces isolated spikes with
very long interspike times between themfcompare the time
scale in Figs. 2sad and 2sbdg. Just past the bifurcation value
sIdc=40 mA/cm2d, the system fires with regularity and the
low noise only modifies slightly the interspike times. On the
other hand, if we place the leech neuron in the excitable, but
bistable regimesIdc=1 mA/cm2d, firing occurs usually in
“bursts” of a few spikes, with long interburst times. Note that
inside a burst the firing period is also quite variable. Such a
bursting behavior is also present in the Hodgkin-Huxley
model in the bistable regimef6g, with the difference that
inside a burst the firing frequency is very regular and not
affected by the noise intensity. Due to its integrator proper-
ties, the leech model shows two different noise-induced time
scales in the bistable regime: an interburst time, and a time
modulating the spiking frequency inside a given burst. As we
will see in the next section, these two time scales produce a
rather different behavior of the ISI distributions as compared
to the Morris-Lecar model.

II. VARIABILITY OF INTERSPIKE TIMES
DISTRIBUTIONS

In many cases when experimental recordings are obtained
from single neurons, spikes appear as random sequences,
even when the external sensory stimuli are held constant
f18–21,30g. There are several statistical quantities which are
relevant for analyzing information transmission and coding
of spiking neuronsf31g. Whether the code used by neurons is
a “rate code,” in which the firing rates of many neurons are
averaged to obtain a signal, or a “time code,” where the
relative times between spikes are meaningful, many impor-
tant properties can be inferred from the distribution of inter-
spike times. This can be related, for instance, to the distribu-
tion of spike counts or to the probability of spiking at a given
time f32g. The reliability and precision of spike timing,
which plays an important role in information coding of cor-
tical and visual neuronsf18–20,22g, is also analyzed in terms
of ISI distributions and their coefficients of variation. It is
thus important to understand properly the dynamical mecha-
nisms by which variability in response to given stimuli arises
in single neurons.

As mentioned above, variability as a function of noise has
been investigated mainly in resonator neuron models. The
subthreshold oscillations may cause phase locking in the
bistable regime, where the stable limit cycle and the stable
rest state coexist. In the presence of noise, the imperfect
phase locking between the interspike intervals and the fun-
damental period of subthreshold oscillations for certain noise
intensities manifests as multimodal ISI distributions with
equidistant peaks. This is illustrated in Fig. 4. In the left
panel, we show the ISI distribution for a Hodgkin-Huxley
neuron model in the bistable regimesIdc=6.5 mA/cm2, see
Ref. f6gd with a noise intensityD=0.7. In the right panel, we
plot the ISI histogram for the leech neuron model also in the
bistable rangesIdc=1 mA/cm2d with the same noise inten-
sity, D=0.7. The distribution is unimodal with a larger coef-
ficient of variation than that corresponding to the first peak
of the Hodgkin-Huxley model. It has also a long exponential
decay typical of a Poisson processssee Fig. 5 and belowd.
This exponential decay is general in ISI distributions of in-
tegrator neurons, except for very low noise intensities in the
spiking regimespast the saddle-node bifurcationd, where the
firing frequency is very regular since noise produces a very
small effect. In Fig. 5, for instance, we show the ISI distri-
butions for the leech model at large noise intensitysD=10,
filled circlesd and moderate noisesD=1, open circlesd for
Idc=1 mA/cm2. At this last value, even two different expo-

FIG. 4. Interspike interval histograms for a
Hodgkin-Huxley modelsleftd and the leech neu-
ron srightd. The noise intensity is the same in both
figures, D=0.7. The constant current isIdc

=6.5 mA/cm2 for the Hodgkin-Huxleyssee Ref.
f6gd andIdc=1 mA/cm2 for the leech modelsboth
neurons are in the bistable regimed.
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nential slopes are clearly visible, which we shall analyze
later in more detail. These two time scales are due to the
bistable behavior and are never present in the Morris-Lecar
model, where only single Poissonian decays are observed in
the whole noise range.

In Fig. 6, we show the CV for the Morris-Lecar model as
a function of the noise intensity, for a dc current in the
excitable regime just before the bifurcation value
fIdc=39.9mA/cm2, squares; see also Figs. 2sad and 2sbd g
and in the spiking regimesIdc=40 mA/cm2, circlesd. The
qualitative behavior of the CV is easily understood from the
discussion accompanying Figs. 2sad and 2sbd. In the excit-
able regime, a low noise intensity produces only isolated
spikes separated by long interspike times. The firing can be
considered as a homogeneous Poisson process with low rate,
and ISI distributions are broad and slowly decaying. Increas-
ing the noise intensity increases the rate, and the coefficient
of variation decreases. On the contrary, if the neuron is past
the bifurcation value, it fires regularly. Noise destroys this
regularity and, since spikes can be generated with a broad
frequency range, firing can be considered again a Poisson
process but now with a high rate, producing higher coher-
ence ssmaller CVd. As noise increases, coherence is de-
stroyed and the CV also increases.

An important observation is that the CVs are always less
than 1, as it should be for a purely Poisson process. This is
due to the fact that neurons cannot respond inmediately after
a spike but need a refractory time for returning to the rest
value of the membrane potentialf31g. The simplest way to
introduce the refractory period in our approach is consider-
ing an inhomogeneous Poisson processf20g, where the

probability of spiking in a small interval around timet,
psst ,t+dtd, is proportional to an instantaneous firing raterstd,

psst,t + dtd = rstddt. s3d

Then the interspike times are distributed according tof32g

Pisistd = e−e0
t rst8ddt8rstd. s4d

Since we know that at long times spiking is Poisson with
constant rater, we approximate the instantaneous raterstd
by f20g

rstd = wstdr, s5d

wherewstd is a recovery function accounting for the refrac-
tory time. Note that this function can be obtained numeri-
cally from the ISI distribution. The exponential factor in
Eq. s4d gives the probability that there is no spike during
a time t f31,32g, that is, the survival probabilitySstd
=1−e0

t Pisist8ddt8. Therefore, the recovery function can be
calculated as

wstd =
1

r

Pisistd
Sstd

. s6d

This function is nearly zero for small times and increases
rapidly at some given timet0, sinceSstd→0 in a short time
interval. Fort→`, wstd=1, see Fig. 7sad. Therefore, in order
to keep the approach analytically simple, we approximate

FIG. 5. sColor onlined ISI distributionsPISIstd for the leech neu-
ron model in the bistable regimesIdc=1 mA/cm2d at two different
noise intensities:D=0.1 sempty circlesd, D=10 sfilled circlesd.

FIG. 6. Coefficients of variation of the ISI distributions for the
Morris-Lecar system in the excitable regimesI =39.9mA/cm2,
open squaresd and in the spiking regimesI =40 mA/cm2, filled
circlesd. The solid and dashed lines are the theoretical prediction
Eq. s7d with a power-law dependence for the refractory period
t0sDd~D−g, g,0.3 in both cases, and the ratesr1sDd numerically
obtained from the ISI distributionsssee main textd.

FIG. 7. sad Recovery function of the
Morris-Lecar system in the excitable re-
gime at D=10, calculated from the ISI
distribution following Eq.s6d. sbd Rater
and absolute refractory periodt0 sinsetd
as a function of the noise intensity for
the Morris-Lecar model in the excitable
regimesIdc=39.9mA/cm2d.

VARIABILITY IN NOISE-DRIVEN INTEGRATOR NEURONS PHYSICAL REVIEW E71, 011911s2005d

011911-5



wstd by a Heaviside functionwstd=ust− t0d sabsolute refrac-
tory periodd, wheret0 nearly coincides with the maximum of
the distribution. We also approximatedwstd by a smooth
function, such as a sigmoidal functionsrelative refractory
periodd, but it did not change significantly the results. With
this choice forwstd it is straightforward to calculate the co-
efficient of variation for the single Poisson process with ISI
distribution s4d,

CV=
1

1 + rt0
. s7d

Note thatr and t0 are functions of the noise intensity, but in
any case both are positive quantities and the CVs always less
than 1 for this simple model. When the system is in the
excitable regime, it is tempting to assume an exponential
dependence on noise intensity for the rater f9,12g,
r~exps−U /Dd, following Kramers’ theory of noise–
activated rate processes. This means that the transition from
quiescence to spiking is equivalent to surmounting an effec-
tive barrierU due to random fluctuations, withU /D@1. In
our case, we observe this exponential dependence for the
Morris-Lecar model atIdc=39.9mA/cm2 only for Dø3, as
shown in Fig. 7sbd. If the Kramers’ dependence were valid
for the wholeD range, we would obtain the minimum in CV
characteristic of coherence resonance, which is not the case.
On the other hand, when looking att0 as a function ofD we
see that it follows rather well a power lawsinset of Fig. 7d,
t0sDd~D−g, with g,0.3 both in the excitable and spiking
regimes. Using this dependence fort0 and the numerically
obtained values for the rater at each noise intensity, we plot
in Fig. 6 the theoretical prediction Eq.s7d as a function ofD
ssolid and dashed lined. The good agreement confirms the
validity of the simple Poisson model with absolute refractory
time to predict variability of ISI distributions of integrator
neuronswithout bistability, both in the excitable and spiking
regimes. We note also that at large noise intensities, the CV
tends to a value close to 1/Î3, which is the strong noise limit
result for the one-dimensional normal form of a saddle-node
systemf24g.

For an integrator neuron with a bistability region, as the
leech model, the behavior of the CV is rather different in this
region. In Fig. 8, we show the CV as a function of the noise
level for the leech neuron at three different values of the dc
current: in the excitable regime, previous to the appearence
of the limit cycle sIdc=0.9 mA/cm2, open squaresd; in the
bistable regime sIdc=1 mA/cm2, filled circlesd; and in
the spiking regime, after the saddle-node bifurcation
sIdc=1.1 mA/cm2, open trianglesd. The excitable and spiking
regimes are similar to those described for the Morris-Lecar
system, and the behavior is well accounted for by the simple
Poisson model with absolute refractory time, except at very
low noise intensities. On the other hand, for low to moderate
noise intensities in the bistable regime, the CV presents a
well defined maximum which is characteristic ofanticoher-
encef33g. At these noise intensities in this regime, ISI dis-
tributions have the double Poisson decay shown in Fig. 5. An
intuitive explanation for this behavior can be given following
the discussion of Figs. 2scd and 2sdd. For low to intermediate

D, the spikes appear now in bursts as those shown in Fig.
2sdd. Now, for low noise, the interburst times are very long
and the significant variability is given mainly by the coher-
ence inside a burst, which is large. For intermediate noise,
interspike and interburst times are comparable and coherence
is minimum smaximum variability in Fig. 8d, while for high
noise levels we have again a single Poisson process with
increasing rate, see Fig. 5, and the CV decreases as in the
Morris-Lecar system in the excitable regime.

The ISI distributions in the bistable regime can be for-
mally expressed, using the same approach as above, as

Pisistd = Qst1 − tdr1wstde−r1e0
t wst8ddt8

+ CQst − t1dr2wstde−r2e0
t wst8ddt8, s8d

wherer1 andr2 give the two different rates,t1 is the cross-
over time between the two exponential decays, andC
=r1expfsr2−r1de0

t1 wst8ddt8g /r2 imposes continuity att= t1.
For a recovery step function,wstd=Qst− t0d, the CV can be
obtained analytically, although the expression is much more
cumbersome than that for the single Poisson processfnote
that this case is recovered from Eq.s8d for t1→`g. The ab-
solute refractory periodt0 and the crossover timet1 follow
rather well a power law as a function of the noise intensity,
D−g, both with exponentg,0.1. The rater2, giving the av-
erage interburst frequency, is again an activated process of
Kramers’ type only forDø0.2.

In the inset of Fig. 8, we compare the numerical coeffi-
cients of variationsfilled circlesd with those calculated from
the distribution Eq.s8d sopen diamondsd, with rates obtained
from the numerical ISI distributions. The maximum appears
in the region where both rates contribute significantly to the
interspike frequency, confirming our qualitative explanation
for the anticoherence behavior in the bistable region.

Finally, it is interesting to investigate if other second-
order properties of the stochastic spiking process, such as the

FIG. 8. Coefficients of variation of the leech neuron for three
different values of the dc current. Excitable regime,Idc

=0.9 mA/cm2, open squares and dashed line. Bistable regime,Idc

=1 mA/cm2, filled circles and solid line. Spiking regime,Idc

=1.1 mA/cm2, open triangles and dotted line. In the inset, we show
with open diamonds the prediction of the two renewals model Eq.
s8d with rates, refractory, and crossover times numerically obtained
from the ISI distributions.

R. GUANTES AND G. G. de POLAVIEJA PHYSICAL REVIEW E71, 011911s2005d

011911-6



power spectrum or the correlation time, also reflect the vari-
ability of the ISI distributions as a function of the noise
intensity. It is known that a minimum or maximum in the CV
does not necessarily imply the same behavior in other indi-
cators, such as spectral coherencef17,34g.

First, we see that the power spectra qualitatively repro-
duce the expected differences in variability in the three re-
gimes. In Fig. 9, we show the power spectra for the leech
neuron model at two different noise intensities,D=0.07
saround the maximum seen in Fig. 8d and D=10. The top
spectra were obtained with the neuron in the excitable re-
gime sIdc=0.9 mA/cm2d, the middle ones in the bistable re-
gime sIdc=1 mA/cm2d, and the low spectra in the spiking
regime sIdc=1.1 mA/cm2d. The maximum of the dominant
peak approximately coincides with the maximum of the ISI
distribution. For low and moderate noise intensities, the co-
herence of the main peak is very different in the three re-
gimes, as expected. At low noise intensity, the neuron fires
very regularly in the spiking regime, at nearly the frequency
of the limit cycle sthe lower intensity peaks in the spectrum
corresponding to even and odd harmonics of this frequencyd,
and irregularly in the excitable regime since spikes are iso-
lated by long interspike periods. A strong noise source
sD=10d makes uniform the coherence of spiking, and the
three regimes approximately present the same power spectra.
In order to quantify this behavior, we calculate the SNR of
the main peak in the power spectrum, defined as usual by

b =
Ssvmaxdvmax

Dv
, s9d

whereDv is the full width at half maximum of the peaksthe
peak is well fitted to a Lorentzian shape, indicating an expo-
nential overall decay of the correlation functiond. This is
shown in the top panel of Fig. 10 for the three different
regimes. In the bistable regimesfilled circlesd, coherence de-
creases faster untilD,1 where it nearly saturates, although
it does not show the minimum characteristic of anticoher-
ence. The correlation timetc, defined as the time average of
the squared correlation functionf9g, shows a similar behav-
ior sFig. 10, middle paneld but it now presents a shallow
minimum aroundD,1, indicating a weak anticoherence. Fi-
nally, we calculate the effective diffusion coefficient of the
spike count distributionNstd snumber of spikes until a time
td, which is related to the variancekDT2l=kT2l−kTl2 and
meankTl of the interspike intervals byf32g

Def f = lim
t→`

kN2stdl − kNstdl2

2t
=

1

2

kDT2l
kTl3 . s10d

In the bottom panel of Fig. 10 we show the effective diffu-
sion coefficient as a function of the noise intensity obtained
from the ISI distribution in the same way as for Fig. 8. It is
seen that in the bistable regimesfilled circlesd it has a maxi-
mum at approximately the same value of the CV. In the
excitable regimesopen squaresd, dispersion in the spike

FIG. 9. Power spectra as a function of the periodsinverse fre-
quencyd for the leech model at two different noise intensities:
D=0.07 stop paneld and D=10 sbottom paneld. The top spectrum
corresponds in both cases to the excitable regime
sIdc=0.9 mA/cm2d, the middle one to the bistable regime
sIdc=1 mA/cm2d, and the bottom one to the spiking regime
sIdc=1.1 mA/cm2d.

FIG. 10. Signal-to-noise ratiostopd, correlation timesmiddled,
and effective diffusion coefficientsbottomd as a function of the
noise intensity for the leech neuron model. Symbols are as in Fig. 8:
open squares and dashed line, excitable regime,Idc=0.9 mA/cm2.
Filled circles and solid line, bistable regime,Idc=1 mA/cm2. Open
triangles and dotted line, spiking regime,Idc=1.1 mA/cm2.
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count is high at low noise intensities since spikes appear
isolated or in bursts of very few spikes, while in the spiking
regimesopen trianglesd, firing is very regular and dispersion
small at low noise. We remark that in integrator neurons,
opposite to resonators, there is not a preferred frequency of
spiking even at low noise intensity, and the autocorrelation
function does not show the neat oscillatory behvior seen, for
instance, in the FitzHugh-Nagumo system in Ref.f9g. Thus,
in integrator neurons the CV or the diffusion coefficient are
likely more appropriate measures of variability than the cor-
relation time or the SNR.

III. CONCLUSIONS

Noise is an unavoidable ingredient in neurons operating
under real conditions. It is argued, however, that some times
it may play a useful role in neural computation enhancing
detection of weak signals or improving information process-
ing f35,36g. It is thus important to understand the dynamical
mechanism of the noise-induced response in single neurons.

In this article we have focused on the response variability
to a constant stimulus with noise in neurons close to a
saddle-node bifurcationsintegratorsd. Opposite to most usu-
ally studied models of resonator neurons, such as the
Hodgkin-Huxley or FitzHugh-Nagumo models, the two real-
istic systems investigated here do not show a coherence reso-
nance behavior in the ISI distributions, although an antico-
herence phenomenon is displayed under bistability
conditions. These distributions are also very different from
those in resonator neurons, which due to the presence of
subthreshold oscillations may show phase locking and thus
several peaks at integer values of the average interspike pe-
riod. Integrator neurons fire with higher irregularity and are
characterized by a Poisson decay of the ISI distribution even
at low noise intensity. This is caused by the much broader
frequency range of their response. We have shown that the
inclusion of the refractory time is necessary to account for
the observed values of coefficient of variation, both in the
excitable and spiking regimes, although the different trends
at low noise intensities are given by the noise dependence of
the Poisson rate. The refractory periods follow a power law
as a function of noise in all the cases analyzed. In the
bistable region, two different time scales are present. This is
due to the peculiar firing features in this region, since spikes
are generated mainly in bursts with a large variability in the
interburst and interspike times. The interplay between these
two time scales maximizes variability if the significant re-
sponse time is not made arbitrarily large.

Finally, let us mention that many neurocomputational
properties depend critically on the underlying dynamics of
the neuronf1g. It is known that most models of cortical neu-
rons are integrators, while neurons in invertabrates are typi-
cally resonators. The study presented here may help to better
understand recent experiments of variability in cortical neu-
ronsf19,22,37g. Especially, bistability may play a role in the
computational properties of these neurons. In spite of their
higher variability, integrator neurons under low and moderate
noise intensities may be able to discriminate frequencies in a
short range of dc input, and have more flexibility in changing
the preferred frequency range than resonator neurons.
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APPENDIX A: MORRIS-LECAR EQUATIONS

Morris and Lecar f25g proposed the following two-
variable model of membrane potential for a barnacle muscle
fiber:

C
dV

dt
= − gCam`sVdsV − VCad − gKwsV − VKd

− gLsV − VLd + Idc,

dw

dt
= ffw`sVd − wg/twsVd,

m`sVd =
1

2
h1 + tanhfsV − V1d/V2gj,

w`sVd =
1

2
h1 + tanhfsV − V3d/V4gj,

twsVd = 1/coshfsV − V3d/V4g, sA1d

whereC is the membrane capacitance,V the membrane volt-
age,gCa, gK, andgL calcium, potassium, and leakage conduc-
tances, respectively,w the fraction of open potassium chan-
nels, andIdc the applied dc current. The parameters used are
ssee Ref. f23gd C=20 mF/cm2, gCa=4 mS/cm2, gK
=8 mS/cm2, gL=2 mS/cm2, VCa=120 mV, VK =−84 mV,
VL=−60 mV, V1=−1.2 mV, V2=18 mV, V3=12 mV, V4
=17.4 mV, andf=0.067.

APPENDIX B: LEECH P-NEURON EQUATIONS

The spiking activity of the leechMacrobdella decora
mechanosensory P-neuronsresponding to pressured was
found to be produced mainly by a sodium currentINa and a
delayed rectifier potassium currentIK f28g. The equations
and parameters used here are as followsssee Ref.f29gd:

C
dV

dt
= − gNam

4hsV − VNad − gKn2sV − VKd − gLsV − VLd + Idc,

dm

dt
=

m`sVd − m

tmsVd
,

dh

dt
=

h`sVd − h

thsVd
,

dn

dt
=

n`sVd − n

tnsVd
, sB1d
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where the asymptotic valuesx` and time constantstx are
given in terms of the opening and closing rates of the gating
variablesm, h, n, as in the Hodgkin-Huxley-type equations,
by x`sVd=axsVd / faxsVd+bxsVdg and txsVd=1/faxsVd
+bxsVdg, with

amsVd =
0.03sV + 28d
1 − e−sV+28d/15,

bmsVd = 2.7e−sV+53d/18,

ahsVd = 0.045e−sV+58d/18,

bhsVd =
0.72

1 + e−sV+23d/14,

ansVd =
0.024sV − 17d
1 − e−sV−17d/8 ,

bnsVd = 0.2e−sV+48d/35. sB2d

Conductances and Nernst potentials have the valuesgNa
=350 mS/cm2, gK =6 mS/cm2, gL=0.5 mS/cm2, VNa
=60.5 mV, VK=−68 mV, VL=−49 mV, andC=1 mF/cm2.
For a neuron with resonator propertiesfpresenting only a
Hopf bifurcation as shown in Fig. 3sadg, parameters are the
same except for the opening rate of the potassium gating
variable,ansVd=0.024sV−17d / s1−e−sV−17d/18d.
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